Ground Vibration Measurements at DESY

Heiko Ehrlichmann, Wilhelm Bialowons, DESY

motivation

magnet vibration could have a significant effect on the beam quality of particle accelerators

- betatron oscillation + decoherence -> emittance
- aberration effects -> emittance
- pointing stability (light sources)
- o displacement at the IP (collider)

the beam quality requirements are increasing
synchrotron light sources, third generation, fourth generation, ...
linear collider

our consequence

 study the impact of "cultural noise" at several accelerator laboratories
 site comparison for future accelerators (in particular for ILC)

our approach: measurements using always the same equipment and data analysis technique -> <u>comparable</u> data sets for all sites -> creation of a public data base

equipment

broadband seismometers (GÜRALP)

measurement of acceleration, output signal: velocity three components: vertical, 2x horizontal integrated 24bit ADC, 200Hz sampling rate data acquisition via notebook / PC frequency ranges: 360s – 80Hz CMG-3T (old) 120s – 80Hz CMG-3T (new) 60s – 80Hz CMG-6T

• geophone system (KEBE)

SENSOR SM-6 geophones with nonlinear high gain amplifier measurement of velocity, output signal: velocity separate sensors for vertical or horizontal 16bit USB-ADC, 500Hz sampling data acquisition via notebook / PC frequency range: 3Hz – 250Hz

data taking and analysis

- continuous data acquisition for 24h or more
- one dataset per minute
 - -> 700MB per day and sensor
- "FFT" based on this file structure
 - -> 1/60Hz lower frequency limit
 - usually without windowing
- integration (velocity -> motion)
 - -> power spectral density (PSD) of motion
- integration above cut frequency
 -> rms-value of motion (in nm) versus f
- interactive Visual Basic programs
- automated online analysis
 - focus on: vertical component

typical PSD

typical power spectral density of vertical ground motion

1/ω⁴ drop -> random walk noise
 microseismic peak (seven second hum) at 0.1-0.2Hz
 f > 1Hz: cultural noise -> uncorrelated

typical PSD + integrated view

typical power spectral density of vertical ground motion

1/ω⁴ drop -> random walk noise
 microseismic peak (seven second hum) at 0.1-0.2Hz
 f > 1Hz: cultural noise -> uncorrelated

site comparison

ver spectral density of vertical ground moti-

ed power spectral density of vertical ground motion versus cut frequenc

Example: Saltmine "Asse" (900m below surface) in comparison to CERN, Fermilab, TESLA and DESY

-> large difference in cultural noise
 -> rms values (f>1Hz between 1nm and 100nm)

single events: street traffic

raw data (velocity)

corresponding PSD

 -> nearby street traffic causes signals in the frequency range between 1Hz and 10Hz

modelling of cultural noise

numerical ground mechanical model for street or rail traffic

inputs: number of cars, trucks ..., masses, damper characteristics, unevenness of street/rail, distance to the street/rail soil parameters

in cooperation with TU HH (Hamburg University of Technology)

preliminary result:

street (rail) traffic seems to be the main reason for "cultural noise"

rms values vs. time

example: XFEL

synchronous measurement with three sensors along the foreseen XFEL site close to DESY

- day-night variation
- working day < > weekend difference

=> for site characterisation it's important to take data for long periods ¹²

rms value distribution

distribution of the rms values of vertical motion (f>1Hz) for complete data taking periods

usually no gaussian distribution

• two maxima

-> quiet times during the night, busy times during the working hours

=> typical distribution for different sites

peak to peak value distribution

another characterisation technique:

•numerical integration of velocity raw data for 1s periods -> displacement (implied1Hz frequency cut)

peak to peak value analysis

distribution of peak to peak values of vertical motion (1s basis)

distribution of peak to peak values of vertical motion (1s basis

 sensitive to short events (1s time scale, no averaging over 1min)

worst cases included

=> maxima and width characteristic for different sites 14

SSRF site measurements

- data taking at the SSRF site in southeast Shanghai during ongoing construction work
- construction works stopped for 24 h
- four sensors used:
 - "S4" and "S5" (CMG-6T) on the concrete foundation of the foreseen experimental area
 - "S3" (CMG-3T) on a much thinner concrete foundation outside the foreseen buildings
 - "S2" outside the temporary office building
- data taking for about 48h
- GPS synchronization

results from SSRF site (1)

PSD comparison for vertical motion, experimental area foundation, average of 1h quiet versus 1h noisy time

- strong influence of cultural noise above 1.5Hz
- clear microseismic peak at 0.23Hz
- clear second microseismic peak at 0.64Hz
- typical sharp peaks around 1.3Hz (one or two) (frequency not constant!)
- good "correlation" for 30m distance up to about 2Hz
- 50Hz signal (unimportant)
- rms values for f>1Hz:
 - quiet: 102nm
 - noisy: 444nm

results from SSRF site (2)

PSD comparison for **horizontal motion**, experimental area foundation, average of 1h quiet versus 1h noisy time

similar

- also microseismic peaks at 0.23Hz and 0,64Hz
- good "correlation" also for frequencies above 2Hz
- rms values for f>1Hz:
 - quiet: 127nm
 - noisy: 354nm

results from SSRF site (3)

PSD comparison for vertical motion, outside the experimental area, average of1h quiet versus 1h noisy time

strong events

- much larger amplitudes
- rms values for f>1Hz:
 - quiet: 202nm
 - noisy: 1510nm

=> experimental area foundation substantially improves the vibration situation !

results from SSRF site (4)

rms values of vertical motion (f>1Hz) versus time

SSRF Shanghai 2005: rms values of vertical motion (f>1Hz) in nm, senors S4 and S5 on the experimental area foundation, S3 outside

experimental area outside

stop of construction works

- "quiet" during the night
- maximum in the morning
- large fluctuations during noisy times

results from SSRF site (5)

peak to peak distribution

distribution of peak to peak values of vertical motion (1s basis)

rms distribution

broad distributions

highest maximum value

=> noisiest site we measured up to now

results from SSRF site (6)

microseismic signal versus time

SSRF Shanghai 2005: distriburion of rms values (f>1Hz) of vertical motion for different frequency ranges, sensor S4 on the experimental area foundation

- tidal behaviour of second hum -> maxima ad flood time?
- is also the sharp signal at around 1.3Hz correlated to water waves on the river?

status of our site comparison

Peak t	Peak to Peak distribution		without high	without highest 5%		ed Data
	Maximum	FWHM	Average	SD	Quiet	Noisy
Location	pp (nm)	(nm)	RMS (nm)	σ (nm)	RMS (nm)	RMS (nm)
1 Seismic Station Moxa		17	0.6	0.1	0.5	0.9
2 Salt Mine Asse	12	35	0.5	0.1	0.5	0.7
3 CERN LHC Tunnel	21	53	1.8	0.8	0.9	2.9
4 Spring-8 Harima	22	40	2.0	0.4	1.8	2.5
5 FNAL Batavia	23	49	2.9	0.9	2.2	9 4.0
6 LAPP Annecy	35	59	3.3	1.6	1.9	7.0
7 IHEP Beijing	49	18	8.4	0.5	8.1	9.0
8 SLAC Menlo Park	60	105	4.8	1.2	4.1	7.4
9 APS Argonne	68	56	10.5	1.0	9.8	11.0
10 ALBA Cerdanyola	87	125	18.3	9.5	9.1	42.0
					9.3	35.9
				11.9	19.5	48.4

http://vibration.desy.de

everyone live data from DESY direct download •all raw data selected data •spectra, results •software

-1012

software download

interactive visual basic application for

PSD display
integrated view
zoom etc.
averaging
back FFT

. . .

acknowledgements

the measurements were done with the help of:

- David Carles from ALBA, Cerdanyola
- Louis Emery from APS, Argonne
- Jörg Feikes from BESSY, Berlin
- Ralph Assmann, Williame Coosemans, Andreas Herty and Stefano Redaelli from CERN, Geneva
- Vittorio Boccone, Carsten Kluth, Bartosz Poljancewicz and Frank Stefan from DESY
- Lin Zhang from ESRF, Genoble
- Kai Desler, David Finley, Victor Kuchler from FNAL, Batavia
- Karl-Heinz Jäckel from GFZ, Potsdam
- Volker Behrens and Hui Fricke from GSF, Asse
- Yingzhi Wu and Chenghui Yu from IHEP; Beijing
- Thomas Jahr, Matthias Meininger and Wernfrid Kühnel from University of Jena
- Mika Masuzawa, Ryuhei Sugahara, Toshiaki Tauchi and Hiroshi Yamaoka from KEK, Tsukuba
- Catherine Adloff, Andrea Jeremie and Yannis Karyotakis from LAPP, Annecy
- Jerry Aarons, Fred Asiri, Frederic Le Pimpec, Marc Ross, Andrei Seryi and Javier Sevilla from SLAC, Menlo Park
- Sakuo Matsui, Tsumoru Shintake and Chao Zhang from SPring8, Harima
- Lingshan Bu, Jianhui Chen, Lianhua Ouyang, Lixin Yin and Xiao Wang from SINAP/SSRF, Shanghai
- Thorsten Bierer and Jürgen Grabe from TUHH, Hamburg

"seismic station"

time (d)

- permanent data acquisition
- permanent data transfer to the University of Hamburg -> geophysics
- online data available for everybody wordwide (on request) -> <u>SCREAM</u>

TESLA module vibration inside the TTF tunnel

rms value of motion for f>3Hz versus time

⇒ strong module vibration
 ⇒ vacuum installation?
 ⇒ module installation itself?

 \Rightarrow further investigation is necessary

... in action

